Chemistry Letters 1999 809 ## Coordination Behavior of Ruthenium(II) Complexes with Alcohol Ligand Tethered to η^6 -Arene Donor Takafumi Ohnishi, Yoshiharu Miyaki, Hideo Asano, and Hideo Kurosawa* Department of Applied Chemistry, Osaka University, Suita, Osaka 565-0871 (Received May 6, 1999; CL-990352) Some ruthenium(II) complexes of an alcohol ligand tethered to η^6 -arene group have been prepared. The alcohol-Ru chelate bond of the complexes containing an N,N'-chelate auxiliary was maintained in methanol. The Cl⁻ ion cleaved the alcohol-Ru bond to give the Ru-Cl bond, while bases (OH⁻, RNH₂) abstracted proton of OH bound to Ru affording the alkoxy chelate complex. In spite of their key role as intermediates in homogeneous catalytic¹ as well as biochemical² transformations, alcohol complexes of late transition metals have rarely been subjects of molecular level coordination chemistry. It appears that some unique tactics, e.g. chelate coordination, are required to maintain otherwise unstable metal-alcohol bonds.3 In addition, these bonds were reported to be susceptible to nucleophiles to result in reversible ligand substitution or deprotonation, with the latter leading to alkoxide formation.³ It seems important to understand how the course of these transformations is affected by the nature of the nucleophile and the metal, but more works are needed before gaining a general insight into such problem. We report here preparation and structures of several ruthenium(II) complexes of alcohol ligands which are tethered to the η^6 -arene group. The present system is particularly well suited for observing unique solution behavior of coordinated alcohols including the first quantitative evaluation of acidity increase of the alcoholic OH hydrogen upon coordination. Treatment of RuCl₃·3H₂O with a cyclohexadiene analog bearing an alcohol side chain (5 equiv) in refluxing ethanol gave orange solids of η^6 -areneruthenium dichloride 1 or 2 in high yields. These were converted to the cationic complexes containing an N,N'-chelate 3 and 4 when treated with the N,N'-donor and NaBF₄, as in the preparation of an unsubstituted η^6 -benzene analog.⁴ $$(CH_{2})_{n}OH \xrightarrow{EtOH} CI \xrightarrow{CI} (CH_{2})_{n}OH \xrightarrow{EtOH} CI \xrightarrow{RU} CI \xrightarrow{NN, NaBF_{4}} MeOH$$ $$1 \text{ (n = 3)} \\ 2 \text{ (n = 2)}$$ $$3a \text{-d (n = 3)} \\ 4c \text{ (n = 2)}$$ $$(a) \text{ (b) (c) (d)} Ph \xrightarrow{NN, NaBF_{4}} MeOH$$ Reaction of 3 with AgBF₄ in CH₂Cl₂ and/or MeOH gave dicationic complexes 5⁵ (Scheme 1). The chelate coordination of the alcohol ligand in **5b** and **5c** was established by X-ray crystallography (Figure 1).⁶ The ¹H NMR data of **5c**⁷ showing two diastereotopic OCH₂ resonances of the alcohol group at δ 2.18 and 3.55 (CDCl₃) are diagnostic for the coordination of the alcohol in solution; *cf.* a single OCH₂ resonance in **3c** (δ 3.50). Treatment of **4c** with AgBF₄ gave η^6 -arene(oxazoline)ruthenium(II) dication, whose single resonance (δ 3.15) due to OCH₂ protons of the CH₂CH₂OH group suggests non-coordination of alcohol, though the dication thus formed could not be isolated pure. **Figure 1.** ORTEP drawing of **5b** and **5c** with ellipsoids at 50% probability levels. BF₄ was omitted for clarity. 1H NMR spectra of $\bf 5c$ measured in CD₃OD were almost the same as those in CDCl₃ or CD₂Cl₂, suggesting that coordination of the pendent alcohol is maintained even in methanol. The analogous coordination of the CH₂CH₂CH₂OH group of $\bf 5a$, $\bf 5b$, and $\bf 5d$ in CD₃OD was also assessed by 1H NMR spectra. Thus, the proton resonances of this group in $\bf 1$ or $\bf 3$ bearing the freely rotating CC bond appeared as a typical $A_2M_2X_2$ spin system, while those in $\bf 5a$, $\bf 5b$, and $\bf 5d$ appeared as more complex AA'MM'XX' patterns since the free rotation about the C-C axis is restricted. Treatment of **5** with 1 equiv of [PPh₄]Cl in CD₂Cl₂ or CD₃OD gave the original chlorides **3** in almost quantitative yields. Of particular note was the reaction of **5c** with NaOH in methanol affording high yield of alkoxide complex **6**.8 In the ¹H NMR spectra of this chelate, the CH₂O proton resonances appeared at δ 2.82 and 3.36 as a diastereotopic pair. No β -H elimination giving an aldehyde functionality has been observed, presumably owing to difficulty for the Ru-O-C-H framework to lie in a plane. $$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$ Addition of amine to a CD₂Cl₂ solution of **5c** resulted in the formation of an equilibrium mixture of **5c** and **6**, the ratio of the 810 Chemistry Letters 1999 two species being dependent on the amount and basicity of the amine. The rate of interconversion between $\bf 5c$ and $\bf 6$ was confirmed rapid on the NMR time scale; averaging was observed at 25 °C for each pair of resonances due to protons of $\bf 5c$ and the corresponding protons of $\bf 6$. Among these, the averaged position of one of the *meta-H* in η^6 -C₆H₅R ring moved from δ 6.80 in $\bf 5c$ to 5.85 in $\bf 6$, when $\bf 5c$ was titrated with an amine (Figure 2). This allowed us to assess acid-base equilibrium constants expressed by eq. 1; a least-square curve-fitting afforded $K_{eq}=1.02\pm0.13$ for B= (C₆H₅CH₂)(CH₃)NH and 0.43 ±0.08 for B= (C₆H₅CH₂)₂NH, suggesting that in CH₂Cl₂ the acidity of the coordinating alcohol in $\bf 5c$ is comparable to those of ammonium salts formed from these amines (pK_a in H₂O, ca. 11). Triethylamine was too basic to allow correct estimation of the equilibrium constant. Figure 2. Variation of chemical shift of *meta*-H in η^6 -C₆H₅R ring as a function of equivalent of amine added to **5c**; triethylamine(\square), benzylmethylamine(\times), and dibenzylamine(\bigcirc). $$\begin{array}{c|c} & & & & \\ \hline PR_3 & & & & \\ \hline MeCN & & & \\ R_3 P^{\text{NU}} & & \\ \hline & \\$$ The complex 1 was converted to PR_3 adducts 7 in high yields by addition of PR_3 (1 equiv) in acetonitrile. Removal of Cl ligand in 7 with $AgBF_4$ in methanol gave crystalline solids 8 in moderate yields. The diastereotopic CH_2O proton resonances of 8 in CD_2Cl_2 again suggest chelate coordination of the alcoholic oxygen. Treatment of 8 with base afforded yet uncharacterizable products. Further studies are in progress to elucidate their structures as well as to delineate roles of the new alcohol and alkoxy complexes obtained here in Ru-mediated organic transformations. ## References and Notes - H. E. Byrndza and W. Tam, Chem. Rev., 88, 1163 (1988); R. A. Widenhoefer and S. L. Buchwald, J. Am. Chem. Soc., 120, 6504 (1998). - D. M. Whitfield, S. Stojkovski, and B. Sarkar, Coord. Chem. Rev., 122, 171 (1993); S. Yano, Coord. Chem. Rev., 92, 113 (1988); H. Junicke, C. Bruhn, D. Strohl, R. Kluge, and D. Steinborn, Inorg. Chem., 37, 4603 (1998). - N. H. Kiers, B. L. Feringa, H. Kooijman, A. L. Spek, and P. W. N. M. van Leeuwen, J. Chem. Soc., Chem. Commun., 1992, 1169; P. L. Alsters, J. Boersma, J. Boersma, W. J. J. Smeets, A. L. Spek, and G. van Koten, Organometallics, 12, 1639 (1993); T. Ito, K. Haji, F. Suzuki, and T. Igarashi, Organometallics, 12, 2325 (1993); A.W. G. Platt and P. G. Pringle, J. Chem. Soc., Dalton Trans., 1989, 1193. - 4 H. Asano, K. Katayama, and H. Kurosawa, *Inorg. Chem.*, 35, 5760 (1996); H. Kurosawa, H. Asano, and Y. Miyaki, *Inorg. Chim. Acta*, 270, 87 (1998). - 5 Complexes 5, 6 and 8 gave satisfactory elemental analyses. - 6 The Ru-O length (2.145(3) Å in **5b**, 2.11(2) Å in **5c**) is comparable to that of $[C_6H_6Ru(bisoxazoline)(H_2O)]^{2+}$ (2.161(8) Å). ⁴ Crystal data for **5b**: $C_{21}H_{20}N_2OB_2F_8Ru$, M=591.08, triclinic, space group $P\bar{1}(\#2)$, a=10.002(2) Å, b=11.714(2) Å, c=9.722(2) Å, $\alpha=92.03(2)^\circ$, $\beta=92.77(2)^\circ$, $\gamma=79.37(2)^\circ$, V=1117.7(4) Å³, Z=2, F(000)=588, Dc=1.756 g/cm³, $\mu(Mo K\alpha)=7.86$ cm⁻¹, 316 variables refined with 4874 reflections with $I>3\sigma(I)$ to R=0.043, Rw=0.064. Crystal data for **5c**•(H₂O)₂: $C_{30}H_{38}N_2O_5B_2F_8Ru$, M=781.32, monoclinic, space group $P2_1(\#4)$, a=9.304(1) Å, b=19.063(2) Å, c=10.485(2) Å, $\beta=110.17(1)^\circ$, V=1745.6(4) ų, Z=2, F(000)=796, Dc=1.486 g/cm³, $\mu(Mo K\alpha)=5.31$ cm⁻¹, 479 variables refined with 2563 reflections with $I>3\sigma(I)$ to R=0.099, Rw=0.124. - 7 H-H COSY spectra established assignments of protons in η⁶-C₆H₅R and the oxazoline ligands. - 8 No well characterizable products could be obtained from 5a or 5b and base; 5d and (C₆H₅CH₂)(CH₃)NH in CD₂Cl₂ gave ¹H NMR spectra suggestive of formation of the alkoxide, though not isolable. - 9 The pK_a values of free alcohols are around 16; W. Reeve, C. M. Erikson, and P. F. Aluotto, *Can. J. Chem.*, 57, 2747 (1979). - 10 Notice $\delta(CH_2O)$ at 3.35 (m) and 3.78 (m) for **8a** and 3.48 (m) and 3.92 (m) for **8b**, which can be compared with that at 3.79 (t) for **7a** and 3.83 (t) for **7b**, respectively.